ENVIRONMENTAL PRODUCT DECLARATION ### INTERIORS PAINTS #### **ECOCAP** ECOCAP BIANCO ECOCAP BASE AC16 PHC ECOCAP BASE AC 16 SCURO ECOCAP BASE AC 16 INCOLORE Programme: The International EPD® System Programme Operator: EPD International AB CPC 3511 - Paints and varnishes and related products PCR 2019:14: "Construction products" version 1.11 Geographical scope: Global Geographical scope: Global Registration no: S-P-06163 Publication date: 18-07-2022 Valid until 15-06-2027 In accordance with ISO 14025:2006 and EN 15804:2012+A2:2019 "An EPD should provide up-to-date information and could be updated if conditions change. The declared validity is therefore subject to continuous registration and publication on www.environdec.com." ## INDEX | 1. | INTRODUCTION | PAG - | |-----------|---|---------| | 2. | COMPANY AND PRODUCT INFORMATION 2.1 THE COMPANY History The company today Certifications Environmental Policy | PAG - | | | 2.2 PRODUCTS | | | 3. | LCA INFORMATION 3.1 DECLARED UNIT 3.2 REFERENCE SERVICE LIFE 3.3 TEMPORAL BOUNDARIES 3.4 SYSTEM BOUNDARIES 3.5 SYSTEM DIAGRAM AND PRODUCTION PROCESSES 3.6 DATABASES AND SOFTWARE | PAG-17 | | 4. | ENVIRONMENTAL PERFORMANCE 4.1 POTENTIAL ENVIRONMENTAL IMPACTS | PAG -2 | | 5. | OTHER ENVIRONMENTAL INFORMATION | PAG -3 | | 6. | REFERENCES | PAG-3: | | 7. | INFORMATION ABOUT THE COMPANY, THE CERTIFICATION BODY AND THE PROGRAMME | PAG -3: | THE INTERNATIONAL EPD® SYSTEM ## INTRODUCTION Type III Environmental Declarations contain verifiable and accurate information on the environmental performance of a product, quantified based on a life cycle impact assessment. Their aim is to produce reliable information, expressed on a common basis, which enables a comparison of environmental performance between products performing the same function. In this perspective of product sustainability, Type III Environmental Declarations are developed in accordance with the requirements and prescriptions of the voluntary standard UNI EN ISO 14025:2010 and to ensure that LCA studies are carried out consistently for all products within the same category, precise rules and methodologies are required. These rules are set out in the Product Category Rules (PCRs), which specify how a life cycle analysis should be carried out for a specific product category and ensure that the results are consistent and comparable. ## COMPANY AND PRODUCT INFORMATION ## HISTORY Passion, professionalism and quality are the values of CAP Arreghini's growth path. A history that has its roots in the distant 1950s, when the founder Adolfo Arreghini, a painter and expert restorer trained in Venice, began to produce his own colours for his profession. Over the years the company has grown, evolving and adapting to the needs of the market, meeting and even anticipating them, becoming a joint stock company in 1988. CAP Arreghini has been able to interpret the changes in society by combining technological evolution with the tradition of reliability and entrepreneurship. ## THE COMPANY CAP Arreghini SpA, with its 70 years of experience and advanced know-how, is an efficient and well-structured company that devotes great attention to technological innovation, research and development of solutions offering high performance, excellent yield and maximum safety, with particular regard to environmental issues. All production is 100% Made in Italy, a value that expresses the great commitment to the entire production cycle and its complexities. Leader in distribution and sales network on the national scene, CAP Arreghini SpA stands out for its complete and varied range of products, intended for the most diverse applications, confirming the professionalism and reliability that distinguish it. CAP Arreghini's solid distribution system ensures fast deliveries and a highly efficient service for the national and international markets. Attention to consumer dynamics and the evolution of markets continue to ensure CAP Arreghini an excellent level of competitiveness. ## CERTIFICATIONS CAP Arreghini has a strong culture of quality that manifests itself in all aspects of doing business, through a constant process of improvement and innovation. From the careful selection of suppliers and materials through to the finished product and its distribution, all stages are constantly monitored according to a strict control system that guarantees the perfect balance between compliance with the imposed regulatory parameters and the required performance. CAP Arreghini SpA enjoys ISO 9001 and ISO 14001 System Certifications, which attest to the achievement of excellent standards in organisation, processes and environmental issues. It is our firm belief that work activities should not affect the surrounding environment and that hazardous or potentially hazardous situations should be monitored in order to continuously improve our environmental impact and aim for continuous improvement in this context. With a view to reducing environmental impact, the company's efforts are currently focused on the development of environmentally friendly products, linked to the reduction of VOC - Volatile Organic Compounds - emissions into the atmosphere and to recent green building regulations. All this testifies to the great commitment to careful and responsible management and production, in order to always offer reliable, high-performance and safe solutions. ## ENVIRONMENTAL POLICY - Research commitment to the progressive reduction in formulations of substances harmful to the environment and humans, both during production and subsequent application. - Development of building systems that offer high insulation performance while reducing energy consumption for heating and cooling homes. - Development of increasingly high-performance and long-lasting products to increase the interval between maintenance operations. - Search for UNI EN ISO 14001:2015 certified raw material suppliers who are located as close as possible to the CAP Arreghini production site to minimise road transport. - Designing the layout of the building to help reduce noise, exhaust fumes and traffic entering and leaving the building. - Receipt and unloading of liquid raw materials with a totally closed loop with double controls to eliminate any possibility of spillage. - Almost totally closed loop production, minimising atmospheric pollutant emissions. - Recovery of production tails and their distillation for reuse of the recovered solvent in the production cycle. - Recovery of rainwater from the drainage areas for internal washing of the equipment used for processing. - Separate collection of waste and contracting of waste disposal to UNI EN ISO 14001:2015 certified companies. In addition to all this, CAP Arreghini is very sensitive to the issue of waste because, as a chemical company, it considers as a crucial factor its involvement and commitment to the protection of the working environment and the territory in which the company is located. All are committed to keeping waste production as low as possible, as well as reducing energy and water consumption, using less paper and fuel, and reducing noise in all its forms. ## 2.2 PRODUCTS Cap Arreghini designs, manufactures and distributes paint products for building constructions and wooden or iron structures, ensuring the pleasure of the aesthetic effect, attention to human well-being and respect for the environment. This EPD covers a range of exterior paints that can be grouped as follows: ### **COLOUR VARIANTS** ### **TABLE 1: COLOUR VARIANTS INCLUDED IN THE EPD** #### FCOCA (washable interior paint) ECOCAP BIANCO ECOCAP BASE AC16 PHC ECOCAP BASE AC 16 SCURO ECOCAP BASE AC 16 INCOLORE ### **COMPOSITION** TABLE 2 - DECLARATION OF CONTENTS FOR 1 KG | ECOCAP | ECOCAP BIANCO | | | | | | | |----------------|---------------------|----------|--|--|--|--|--| | | Water | 30-40% | | | | | | | RAW MATERIALS* | Fillers and pigment | 45-55% | | | | | | | RAVV MAIERIALS | Resins | 5-20% | | | | | | | | Additives | 1-5% | | | | | | | ECOCAP | BIANCO | Kg/kg | | | | | | | | Polypropylene | 4,86E-02 | | | | | | | PACKAGING* | Polyethylene | 5,88E-04 | | | | | | | | Wood | 4,71E-02 | | | | | | $The \ analysed \ product \ can \ be \ sold \ in \ different \ formats. The \ table \ shows \ an \ average \ weight, \ calculated \ as \ an \ average \ of \ the \ formats.$ ## LCA Life Cycle Assessment ## LCA INFORMATION ### 3.1 DECLARED UNIT The declared unit is equal to 1 kg of paint product (packaging included). ### 3.2 REFERENCE SERVICE LIFE $Not\ applicable.$ ### 3.3 TEMPORAL BOUNDARIES The temporal boundaries include the period from January 2020 to December 2020, a time frame considered to be representative of the company's activities. These were chosen given the fullest availability of information relating to the analysis. ### 3.4 SYSTEM BOUNDARIES In accordance with the reference standard UNI EN 15804 and the PCR followed, the environmental impact assessment of product life cycle is of the type "from cradle to gate with modules C1-C4 and module D" (Figure 1). Modules A4-A5 and B1-B7 were excluded. | | PROI | DUCT SI | [AGE | CONS
ON PR
STA | | USE STAGE | | | | | | EN | ND OF L | ife stac | ЭE | BENEFITS AND
LOADS BEYOND
THE SYSTEM
BOUNDARIES | | |---------------------|---------------------|-----------|---------------|----------------------|---------------------------|-----------|-------------|--------|-------------|---------------|------------------------|-----------------------|----------------------------|-----------|------------------|--|--| | | Raw material supply | Transport | Manufacturing | Transport | Construction installation | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | Decostrunction, demolition | Transport | Waste processing | Disposal | Reuse-recovery-
recycling potential | | | Al | A2 | А3 | A4 | A5 | В1 | B2 | В3 | В4 | B5 | В6 | B7 | C1 | C2 | C3 | C4 | D | | | Χ | Χ | Χ | ND Χ | Χ | Χ | Χ | Х | | Geography | GLO | GLO | IT | - | - | - | - | - | - | - | - | - | - | IT | IT | IT | IT | | Specific data used | | >90% | | - | - | - | - | - | - | - | - | - | - | - | - | - | | | Variation – product | no | ot relevo | nt | - | | | - | - | - | | - | | - | - | | | | | Variation – site | nc | ot relevo | nt | - | - | - | - | - | - | - | - | - | - | - | - | - | | Figura 1: ND= Module not declared #### **TABLE 4** | MODULE | INDICATOR | | | | |---------------------------------|--------------------------------------|--------------|--|--| | A1 – Raw material supply | Materia prima | | | | | AT – Kaw Ilialeriai supply | Consumo energia elettrica | UPSTREAM | | | | A2 – Transport | Trasporto materia prima e imballaggi | | | | | | Materia (imballaggi) | | | | | A3 - Manufacturing | Trasporto rifiuti generati | CORE | | | | | Trattamento rifiuti generati | | | | | C1 - De-construction demolition | Consumi legati alla demolizioni | | | | | C2 - Transport | Trasporto dei rifiuti | END OF LIFE | | | | C3 - Waste processing | Trattamento dei rifiuti | LIND OF LIFE | | | | C4 - Disposal | Smaltimento | | | | Flows related to make-up water from the mains for washing and dust emissions from chimneys were not accounted for in the study. In addition, the usage phases (B1-B7) were not included in the study, as the paint products are applied manually and directly onto the object and do not require maintenance or repair work, nor do they involve consumption of energy or water. The scenarios adopted for modelling modules C1, C2, C3, C4 and D were considered and assumed as follows: - Impacts associated with demolition (C1) are assumed to be negligible (after application, the product is physically integrated with other materials and cannot be physically separated from them at the end of its life) - The product is sent to end-of-life with an EWC code from Chapter 17 (Dlgs 152/2006), it is therefore assumed a 100% landfill scenario at a distance of 53.1 km. - After demolition activities, the product is not recovered (C3). - After demolition activities, the product is entirely disposed of. - The result of phase D is zero, because there are no end-of-life benefits (recycling, recovery and/or reuse). ## 3.5 SYSTEM DIAGRAM AND PRODUCTION PROCESSES For each information module, characteristic environmental performance indicators were investigated. In selecting the data to be used for the study, preference was given to primary data that could be catalogued by the company. This data is the primary source of information for inventory analysis. The latter can be grouped according to environmental performance indicators, to which the results of environmental performance will then be referred. Based on these indicators, the software model was elaborated and the inventory analysis was then developed according to macro-consumptions referring to the declared unit that characterises the study. The production block diagram is presented below (Figure 2). Figure 2 ### 3.6 DATABASES AND SOFTWARE The SimaPro calculation software (SimaPro 9) was used to process the inventory and calculate the environmental profiles, and the following databases were selected: "ECOINVENT", "ELCD". 4. ENVIRONMENTAL PERFORMANCE ## 4.1 POTENTIAL ENVIRONMENTAL IMPACTS Below are the results of the environmental profile obtained from the life cycle analysis of the products subject to the environmental declaration, regarding the impact categories in accordance with UNI EN 15804. ### **ECOCAP BIANCO** **TABLE 4**: Breakdown of impact assessment results by environmental performance indicators with reference to the declared unit in the investigated information modules. | IMPACT CATEGORY | UNITS | A1-A3 | Cl | C2 | C3 | C4 | TOTAL | D | |--|-----------------------|-----------|----------|----------|----------|----------|----------|----------| | Climate change | kg CO ₂ eq | 9,96E-01 | 0,00E+00 | 9,62E-03 | 0,00E+00 | 1,22E+00 | 2,22E+00 | 0,00E+00 | | Climate change - Fossil | kg CO ₂ eq | 1,06E+00 | 0,00E+00 | 9,59E-03 | 0,00E+00 | 3,03E-01 | 1,37E+00 | 0,00E+00 | | Climate change
- Biogenic | kg CO ₂ eq | -6,58E-02 | 0,00E+00 | 2,56E-05 | 0,00E+00 | 9,13E-01 | 8,47E-01 | 0,00E+00 | | Climate change - Land
use and LU change | kg CO ₂ eq | 2,86E-03 | 0,00E+00 | 3,80E-06 | 0,00E+00 | 2,41E-05 | 2,88E-03 | 0,00E+00 | | Ozone depletion | kg CFC11 eq | 1,15E-07 | 0,00E+00 | 2,24E-09 | 0,00E+00 | 6,56E-09 | 1,24E-07 | 0,00E+00 | | Acidification | mol H+ eq | 2,01E-02 | 0,00E+00 | 4,86E-05 | 0,00E+00 | 3,43E-04 | 2,05E-02 | 0,00E+00 | | Eutrophication,
freshwater* | kg P eq | 3,12E-04 | 0,00E+00 | 6,23E-07 | 0,00E+00 | 2,92E-05 | 3,42E-04 | 0,00E+00 | | Eutrophication, marine | kg N eq | 1,23E-03 | 0,00E+00 | 1,67E-05 | 0,00E+00 | 1,19E-03 | 2,44E-03 | 0,00E+00 | | Eutrophication, terrestrial | mol N eq | 1,11E-02 | 0,00E+00 | 1,83E-04 | 0,00E+00 | 1,33E-03 | 1,26E-02 | 0,00E+00 | | Photochemical ozone formation | kg NMVOC eq | 3,86E-03 | 0,00E+00 | 4,46E-05 | 0,00E+00 | 4,72E-04 | 4,37E-03 | 0,00E+00 | | Resource use, minerals and metals | kg Sb eq | 8,07E-06 | 0,00E+00 | 3,36E-08 | 0,00E+00 | 1,23E-07 | 8,23E-06 | 0,00E+00 | | Resource use, fossils | MJ | 1,84E+01 | 0,00E+00 | 1,46E-01 | 0,00E+00 | 5,27E-01 | 1,91E+01 | 0,00E+00 | | Water use | m3 depriv. | 1,29E+00 | 0,00E+00 | 4,38E-04 | 0,00E+00 | 3,07E-02 | 1,32E+00 | 0,00E+00 | | Particulate matter | disease inc. | 7,40E-08 | 0,00E+00 | 6,91E-10 | 0,00E+00 | 9,22E-09 | 8,39E-08 | 0,00E+00 | | lonising radiation | kBq U-235 eq | 1,21E-01 | 0,00E+00 | 7,52E-04 | 0,00E+00 | 2,74E-03 | 1,24E-01 | 0,00E+00 | | Ecotoxicity, freshwater | CTUe | 2,63E+01 | 0,00E+00 | 1,14E-01 | 0,00E+00 | 3,02E+01 | 5,66E+01 | 0,00E+00 | | Human toxicity, non-cancer | CTUh | 1,45E-08 | 0,00E+00 | 1,19E-10 | 0,00E+00 | 4,79E-09 | 1,94E-08 | 0,00E+00 | | Human toxicity, cancer | CTUh | 2,90E-09 | 0,00E+00 | 3,69E-12 | 0,00E+00 | 3,54E-10 | 3,26E-09 | 0,00E+00 | | Land use | Pt | 1,38E+01 | 0,00E+00 | 1,04E-01 | 0,00E+00 | 6,24E-01 | 1,45E+01 | 0,00E+00 | the results in kg PO_4 eq. are obtained by multiplying the results in kg P eq. with a factor of 3.07. ### **ECOCAP BIANCO** **TABLE 5**: Breakdown of the results of the use of resources with reference to the declared unit in the investigated information modules. | PARAMETERS | UNIT OF
MEASUREMENT | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | |------------|------------------------|----------|----------|----------|----------|-----------|----------|----------| | PERE | M | 1,80E+00 | 0,00E+00 | 2,06E-03 | 0,00E+00 | 8,40E-01 | 2,64E+00 | 0,00E+00 | | PERM | M | 8,24E-01 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -8,24E-01 | 0,00E+00 | 0,00E+00 | | PERT | MJ | 2,62E+00 | 0,00E+00 | 2,06E-03 | 0,00E+00 | 1,68E-02 | 2,64E+00 | 0,00E+00 | | PENRE | M | 1,61E+01 | 0,00E+00 | 1,46E-01 | 0,00E+00 | 2,78E+00 | 1,91E+01 | 0,00E+00 | | PENRM | MJ | 2,25E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -2,25E+00 | 0,00E+00 | 0,00E+00 | | PENRT | MJ | 1,84E+01 | 0,00E+00 | 1,46E-01 | 0,00E+00 | 5,27E-01 | 1,91E+01 | 0,00E+00 | | SM | Kg | 0,00E+00 | RSF | MJ | 0,00E+00 | NRSF | MJ | 0,00E+00 | FW | m^3 | 3,26E-02 | 0,00E+00 | 1,52E-05 | 0,00E+00 | 7,49E-04 | 3,33E-02 | 0,00E+00 | PERE = Use of renewable primary energy resources excluding primary renewable energy resources used as feedstocks; PERM = Use of renewable primary energy resources as feedstocks; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources excluding primary non-renewable energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of fresh water. ### **ECOCAP BIANCO** **TABLE 6**: Waste breakdown with reference to the declared unit in the investigated information modules. | PARAMETERS | UNIT OF
MEASUREMENT | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | |------------|------------------------|----------|----------|----------|----------|----------|----------|----------| | HWD | Kg | 1,97E-05 | 0,00E+00 | 3,82E-07 | 0,00E+00 | 1,62E-06 | 2,17E-05 | 0,00E+00 | | NHWD | Kg | 7,55E-01 | 0,00E+00 | 7,52E-03 | 0,00E+00 | 6,45E-01 | 1,41E+00 | 0,00E+00 | | RWD | Kg | 5,59E-05 | 0,00E+00 | 9,89E-07 | 0,00E+00 | 2,66E-06 | 5,96E-05 | 0,00E+00 | $HWD = Hazardous\ Waste\ Disposed;\ NHWD = Non-Hazardous\ Waste\ Disposed;\ RWD = Radioactive\ Waste\ Disposed.$ ### **ECOCAP BIANCO** **TABLE 7**: Breakdown of output streams with reference to the declared unit along the investigated information modules. | PARAMETERS | UNIT OF
MEASUREMENT | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | |------------|------------------------|----------|----------|----------|----------|----------|----------|----------| | CRU | Kg | 0,00E+00 | MFR | Kg | 0,00E+00 | MER | Kg | 0,00E+00 | EEE | MJ | 0,00E+00 | EET | MJ | 0,00E+00 | CRU | Kg | 0,00E+00 CRU = Components for Reuse; MFR = Materials for Recycling; MER = Materials for Energy Recovery; EEE = Exported Electrical Energy; EET = Exported Thermal Energy, ### **ECOCAP BASE AC16 PHC** **TABLE 8**: Breakdown of impact assessment results by environmental performance indicators with reference to the declared unit in the investigated information modules. | IMPACT CATEGORY | UNITS | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | |--|-----------------------|-----------|----------|----------|----------|----------|----------|----------| | Climate change | kg CO ₂ eq | 9,96E-01 | 0,00E+00 | 9,62E-03 | 0,00E+00 | 1,22E+00 | 2,22E+00 | 0,00E+00 | | Climate change - Fossil | kg CO ₂ eq | 1,06E+00 | 0,00E+00 | 9,59E-03 | 0,00E+00 | 3,03E-01 | 1,37E+00 | 0,00E+00 | | Climate change
- Biogenic | kg CO ₂ eq | -6,58E-02 | 0,00E+00 | 2,56E-05 | 0,00E+00 | 9,13E-01 | 8,47E-01 | 0,00E+00 | | Climate change - Land
use and LU change | kg CO ₂ eq | 2,86E-03 | 0,00E+00 | 3,80E-06 | 0,00E+00 | 2,41E-05 | 2,88E-03 | 0,00E+00 | | Ozone depletion | kg CFC11 eq | 1,15E-07 | 0,00E+00 | 2,24E-09 | 0,00E+00 | 6,56E-09 | 1,24E-07 | 0,00E+00 | | Acidification | mol H+ eq | 2,01E-02 | 0,00E+00 | 4,86E-05 | 0,00E+00 | 3,43E-04 | 2,05E-02 | 0,00E+00 | | Eutrophication,
freshwater* | kg P eq | 3,12E-04 | 0,00E+00 | 6,23E-07 | 0,00E+00 | 2,92E-05 | 3,42E-04 | 0,00E+00 | | Eutrophication, marine | kg N eq | 1,23E-03 | 0,00E+00 | 1,67E-05 | 0,00E+00 | 1,19E-03 | 2,44E-03 | 0,00E+00 | | Eutrophication, terrestrial | mol N eq | 1,11E-02 | 0,00E+00 | 1,83E-04 | 0,00E+00 | 1,33E-03 | 1,26E-02 | 0,00E+00 | | Photochemical ozone formation | kg NMVOC eq | 3,86E-03 | 0,00E+00 | 4,46E-05 | 0,00E+00 | 4,72E-04 | 4,37E-03 | 0,00E+00 | | Resource use, minerals and metals | kg Sb eq | 8,07E-06 | 0,00E+00 | 3,36E-08 | 0,00E+00 | 1,23E-07 | 8,23E-06 | 0,00E+00 | | Resource use, fossils | MJ | 1,84E+01 | 0,00E+00 | 1,46E-01 | 0,00E+00 | 5,27E-01 | 1,91E+01 | 0,00E+00 | | Water use | m3 depriv. | 1,29E+00 | 0,00E+00 | 4,38E-04 | 0,00E+00 | 3,07E-02 | 1,32E+00 | 0,00E+00 | | Particulate matter | disease inc. | 7,40E-08 | 0,00E+00 | 6,91E-10 | 0,00E+00 | 9,22E-09 | 8,39E-08 | 0,00E+00 | | lonising radiation | kBq U-235 eq | 1,21E-01 | 0,00E+00 | 7,52E-04 | 0,00E+00 | 2,74E-03 | 1,24E-01 | 0,00E+00 | | Ecotoxicity, freshwater | CTUe | 2,63E+01 | 0,00E+00 | 1,14E-01 | 0,00E+00 | 3,02E+01 | 5,66E+01 | 0,00E+00 | | Human toxicity, non-cancer | CTUh | 1,45E-08 | 0,00E+00 | 1,19E-10 | 0,00E+00 | 4,79E-09 | 1,94E-08 | 0,00E+00 | | Human toxicity, cancer | CTUh | 2,90E-09 | 0,00E+00 | 3,69E-12 | 0,00E+00 | 3,54E-10 | 3,26E-09 | 0,00E+00 | | Land use | Pt | 1,38E+01 | 0,00E+00 | 1,04E-01 | 0,00E+00 | 6,24E-01 | 1,45E+01 | 0,00E+00 | the results in kg PO_4 eq. are obtained by multiplying the results in kg P eq. with a factor of 3.07. #### **ECOCAP BASE AC16 PHC** **TABLE 9**: Breakdown of the results of the use of resources with reference to the declared unit in the investigated information modules. | PARAMETERS | UNIT OF
MEASUREMENT | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | |------------|------------------------|----------|----------|----------|----------|-----------|----------|----------| | PERE | M | 1,80E+00 | 0,00E+00 | 2,06E-03 | 0,00E+00 | 8,40E-01 | 2,64E+00 | 0,00E+00 | | PERM | M | 8,24E-01 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -8,24E-01 | 0,00E+00 | 0,00E+00 | | PERT | M | 2,62E+00 | 0,00E+00 | 2,06E-03 | 0,00E+00 | 1,68E-02 | 2,64E+00 | 0,00E+00 | | PENRE | M | 1,61E+01 | 0,00E+00 | 1,46E-01 | 0,00E+00 | 2,78E+00 | 1,91E+01 | 0,00E+00 | | PENRM | MJ | 2,25E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -2,25E+00 | 0,00E+00 | 0,00E+00 | | PENRT | M | 1,84E+01 | 0,00E+00 | 1,46E-01 | 0,00E+00 | 5,27E-01 | 1,91E+01 | 0,00E+00 | | SM | Kg | 0,00E+00 | RSF | M | 0,00E+00 | NRSF | M | 0,00E+00 | FW | m^3 | 3,26E-02 | 0,00E+00 | 1,52E-05 | 0,00E+00 | 7,49E-04 | 3,33E-02 | 0,00E+00 | PERE = Use of renewable primary energy resources excluding primary renewable energy resources used as feedstocks; PERM = Use of renewable primary energy resources as feedstocks; PERM = Use of renewable primary energy resources as raw materials; PENRM = Use of non-renewable primary energy resources as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of fresh water. ### **ECOCAP BASE AC16 PHC** **TABLE 10**: Waste breakdown with reference to the declared unit in the investigated information modules. | PARAMETERS | UNIT OF
MEASUREMENT | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | |------------|------------------------|----------|----------|----------|----------|----------|----------|----------| | HWD | Kg | 1,97E-05 | 0,00E+00 | 3,82E-07 | 0,00E+00 | 1,62E-06 | 2,17E-05 | 0,00E+00 | | NHWD | Kg | 7,55E-01 | 0,00E+00 | 7,52E-03 | 0,00E+00 | 6,45E-01 | 1,41E+00 | 0,00E+00 | | RWD | Kg | 5,59E-05 | 0,00E+00 | 9,89E-07 | 0,00E+00 | 2,66E-06 | 5,96E-05 | 0,00E+00 | $HWD = Hazardous\ Waste\ Disposed;\ NHWD = Non-Hazardous\ Waste\ Disposed;\ RWD = Radioactive\ Waste\ Disposed.$ ### **ECOCAP BASE AC16 PHC** **TABLE 11**: Breakdown of output streams with reference to the declared unit along the investigated information modules. | | <i>J I</i> | , | | , | 3 | , | | | |------------|------------------------|----------|----------|----------|----------|----------|----------|----------| | PARAMETERS | UNIT OF
MEASUREMENT | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | | CRU | Kg | 0,00E+00 | MFR | Kg | 0,00E+00 | MER | Kg | 0,00E+00 | EEE | MJ | 0,00E+00 | EET | M | 0,00E+00 | CRU | Kg | 0,00E+00 CRU = Components for Reuse; MFR = Materials for Recycling; MER = Materials for Energy Recovery; EEE = Exported Electrical Energy; EET = Exported Thermal Energy. ### **ECOCAP BASE AC 16 SCURO** **TABLE 12**: Breakdown of impact assessment results by environmental performance indicators with reference to the declared unit in the investigated information modules. | IMPACT CATEGORY | UNITS | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | |--|-----------------------|-----------|----------|----------|----------|----------|----------|----------| | Climate change | kg CO ₂ eq | 4,22E-01 | 0,00E+00 | 9,62E-03 | 0,00E+00 | 1,22E+00 | 1,65E+00 | 0,00E+00 | | Climate change - Fossil | kg CO ₂ eq | 6,32E-01 | 0,00E+00 | 9,59E-03 | 0,00E+00 | 3,03E-01 | 9,44E-01 | 0,00E+00 | | Climate change
- Biogenic | kg CO ₂ eq | -2,13E-01 | 0,00E+00 | 2,56E-05 | 0,00E+00 | 9,13E-01 | 7,00E-01 | 0,00E+00 | | Climate change - Land
use and LU change | kg CO ₂ eq | 3,25E-03 | 0,00E+00 | 3,80E-06 | 0,00E+00 | 2,41E-05 | 3,28E-03 | 0,00E+00 | | Ozone depletion | kg CFC11 eq | 6,60E-08 | 0,00E+00 | 2,24E-09 | 0,00E+00 | 6,56E-09 | 7,48E-08 | 0,00E+00 | | Acidification | mol H+ eq | 8,50E-03 | 0,00E+00 | 4,86E-05 | 0,00E+00 | 3,43E-04 | 8,89E-03 | 0,00E+00 | | Eutrophication,
freshwater* | kg P eq | 1,78E-04 | 0,00E+00 | 6,23E-07 | 0,00E+00 | 2,92E-05 | 2,08E-04 | 0,00E+00 | | Eutrophication, marine | kg N eq | 7,29E-04 | 0,00E+00 | 1,67E-05 | 0,00E+00 | 1,19E-03 | 1,94E-03 | 0,00E+00 | | Eutrophication, terrestrial | mol N eq | 6,86E-03 | 0,00E+00 | 1,83E-04 | 0,00E+00 | 1,33E-03 | 8,38E-03 | 0,00E+00 | | Photochemical ozone formation | kg NMVOC eq | 2,10E-03 | 0,00E+00 | 4,46E-05 | 0,00E+00 | 4,72E-04 | 2,62E-03 | 0,00E+00 | | Resource use, minerals and metals | kg Sb eq | 5,36E-06 | 0,00E+00 | 3,36E-08 | 0,00E+00 | 1,23E-07 | 5,52E-06 | 0,00E+00 | | Resource use, fossils | MJ | 1,17E+01 | 0,00E+00 | 1,46E-01 | 0,00E+00 | 5,27E-01 | 1,24E+01 | 0,00E+00 | | Water use | m3 depriv. | 5,44E-01 | 0,00E+00 | 4,38E-04 | 0,00E+00 | 3,07E-02 | 5,76E-01 | 0,00E+00 | | Particulate matter | disease inc. | 3,74E-08 | 0,00E+00 | 6,91E-10 | 0,00E+00 | 9,22E-09 | 4,73E-08 | 0,00E+00 | | lonising radiation | kBq U-235 eq | 7,56E-02 | 0,00E+00 | 7,52E-04 | 0,00E+00 | 2,74E-03 | 7,91E-02 | 0,00E+00 | | Ecotoxicity, freshwater | CTUe | 1,48E+01 | 0,00E+00 | 1,14E-01 | 0,00E+00 | 3,02E+01 | 4,51E+01 | 0,00E+00 | | Human toxicity, non-cancer | CTUh | 8,80E-09 | 0,00E+00 | 1,19E-10 | 0,00E+00 | 4,79E-09 | 1,37E-08 | 0,00E+00 | | Human toxicity, cancer | CTUh | 1,36E-09 | 0,00E+00 | 3,69E-12 | 0,00E+00 | 3,54E-10 | 1,71E-09 | 0,00E+00 | | Land use | Pt | 1,93E+01 | 0,00E+00 | 1,04E-01 | 0,00E+00 | 6,24E-01 | 2,00E+01 | 0,00E+00 | the results in kg PO_4 eq. are obtained by multiplying the results in kg P eq. with a factor of 3.07. ### **ECOCAP BASE AC 16 SCURO** **TABLE 13**: Breakdown of the results of the use of resources with reference to the declared unit in the investigated information modules. | PARAMETERS | UNIT OF
MEASUREMENT | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | |------------|------------------------|-------------------|----------|----------|----------|-----------|----------|----------| | PERE | M | 2,84E+00 | 0,00E+00 | 2,06E-03 | 0,00E+00 | 8,40E-01 | 3,68E+00 | 0,00E+00 | | PERM | M | 8,24E-01 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -8,24E-01 | 0,00E+00 | 0,00E+00 | | PERT | M | 3,66E+00 | 0,00E+00 | 2,06E-03 | 0,00E+00 | 1,68E-02 | 3,68E+00 | 0,00E+00 | | PENRE | M | 9,43E+00 | 0,00E+00 | 1,46E-01 | 0,00E+00 | 2,78E+00 | 1,24E+01 | 0,00E+00 | | PENRM | M | 2,25E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -2,25E+00 | 0,00E+00 | 0,00E+00 | | PENRT | M | 1,1 <i>7</i> E+01 | 0,00E+00 | 1,46E-01 | 0,00E+00 | 5,27E-01 | 1,24E+01 | 0,00E+00 | | SM | Kg | 0,00E+00 | RSF | M | 0,00E+00 | NRSF | M | 0,00E+00 | FVV | m ³ | 1,05E-02 | 0,00E+00 | 1,52E-05 | 0,00E+00 | 7,49E-04 | 1,12E-02 | 0,00E+00 | PERE = Use of renewable primary energy resources excluding primary renewable energy resources used as feedstocks; PERM = Use of renewable primary energy resources as feedstocks; PERM = Use of non-renewable primary energy resources excluding primary non-renewable energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of fresh water. ### **ECOCAP BASE AC 16 SCURO** **TABLE 14**: Waste breakdown with reference to the declared unit in the investigated information modules. | PARAMETERS | UNIT OF
MEASUREMENT | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | |------------|------------------------|----------|----------|----------|----------|----------|----------|----------| | HWD | Kg | 1,21E-05 | 0,00E+00 | 3,82E-07 | 0,00E+00 | 1,62E-06 | 1,41E-05 | 0,00E+00 | | NHWD | Kg | 3,27E-01 | 0,00E+00 | 7,52E-03 | 0,00E+00 | 6,45E-01 | 9,79E-01 | 0,00E+00 | | RVVD | Kg | 3,32E-05 | 0,00E+00 | 9,89E-07 | 0,00E+00 | 2,66E-06 | 3,68E-05 | 0,00E+00 | $HWD = Hazardous\ Waste\ Disposed;\ NHWD = Non-Hazardous\ Waste\ Disposed;\ RWD = Radioactive\ Waste\ Disposed.$ ### **ECOCAP BASE AC 16 SCURO** **TABLE 15**: Breakdown of output streams with reference to the declared unit along the investigated information modules. | | , , | , | | | | | | | |------------|------------------------|---|----------|----------|----------|----------|----------|----------| | PARAMETERS | UNIT OF
MEASUREMENT | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | | CRU | Kg | 0,00E+00 | MFR | Kg | 0,00E+00 | MER | Kg | 0,00E+00 | EEE | MJ | 0,00E+00 | EET | M | 0,00E+00 | CRU | Kg | 0,00E+00 CRU = Components for Reuse; MFR = Materials for Recycling; MER = Materials for Energy Recovery; EEE = Exported Electrical Energy; EET = Exported Thermal Energy. ### **ECOCAP BASE AC 16 INCOLORE** **TABLE 16**: Breakdown of impact assessment results by environmental performance indicators with reference to the declared unit in the investigated information modules. | IMPACT CATEGORY | UNITS | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | |--|-----------------------|-----------|----------|----------|----------|----------|----------|----------| | Climate change | kg CO ₂ eq | 3,27E-01 | 0,00E+00 | 9,62E-03 | 0,00E+00 | 1,22E+00 | 1,55E+00 | 0,00E+00 | | Climate change - Fossil | kg CO ₂ eq | 4,18E-01 | 0,00E+00 | 9,59E-03 | 0,00E+00 | 3,03E-01 | 7,30E-01 | 0,00E+00 | | Climate change
- Biogenic | kg CO ₂ eq | -9,32E-02 | 0,00E+00 | 2,56E-05 | 0,00E+00 | 9,13E-01 | 8,20E-01 | 0,00E+00 | | Climate change - Land
use and LU change | kg CO ₂ eq | 1,73E-03 | 0,00E+00 | 3,80E-06 | 0,00E+00 | 2,41E-05 | 1,76E-03 | 0,00E+00 | | Ozone depletion | kg CFC11 eq | 4,30E-08 | 0,00E+00 | 2,24E-09 | 0,00E+00 | 6,56E-09 | 5,18E-08 | 0,00E+00 | | Acidification | mol H+ eq | 2,03E-03 | 0,00E+00 | 4,86E-05 | 0,00E+00 | 3,43E-04 | 2,42E-03 | 0,00E+00 | | Eutrophication,
freshwater* | kg P eq | 1,09E-04 | 0,00E+00 | 6,23E-07 | 0,00E+00 | 2,92E-05 | 1,38E-04 | 0,00E+00 | | Eutrophication, marine | kg N eq | 4,40E-04 | 0,00E+00 | 1,67E-05 | 0,00E+00 | 1,19E-03 | 1,65E-03 | 0,00E+00 | | Eutrophication, terrestrial | mol N eq | 4,52E-03 | 0,00E+00 | 1,83E-04 | 0,00E+00 | 1,33E-03 | 6,03E-03 | 0,00E+00 | | Photochemical ozone formation | kg NMVOC eq | 1,19E-03 | 0,00E+00 | 4,46E-05 | 0,00E+00 | 4,72E-04 | 1,70E-03 | 0,00E+00 | | Resource use, minerals and metals | kg Sb eq | 3,83E-06 | 0,00E+00 | 3,36E-08 | 0,00E+00 | 1,23E-07 | 3,99E-06 | 0,00E+00 | | Resource use, fossils | MJ | 9,02E+00 | 0,00E+00 | 1,46E-01 | 0,00E+00 | 5,27E-01 | 9,69E+00 | 0,00E+00 | | Water use | m3 depriv. | 1,80E-01 | 0,00E+00 | 4,38E-04 | 0,00E+00 | 3,07E-02 | 2,11E-01 | 0,00E+00 | | Particulate matter | disease inc. | 1,67E-08 | 0,00E+00 | 6,91E-10 | 0,00E+00 | 9,22E-09 | 2,67E-08 | 0,00E+00 | | lonising radiation | kBq U-235 eq | 5,25E-02 | 0,00E+00 | 7,52E-04 | 0,00E+00 | 2,74E-03 | 5,60E-02 | 0,00E+00 | | Ecotoxicity, freshwater | CTUe | 7,48E+00 | 0,00E+00 | 1,14E-01 | 0,00E+00 | 3,02E+01 | 3,78E+01 | 0,00E+00 | | Human toxicity, non-cancer | CTUh | 5,47E-09 | 0,00E+00 | 1,19E-10 | 0,00E+00 | 4,79E-09 | 1,04E-08 | 0,00E+00 | | Human toxicity, cancer | CTUh | 2,91E-10 | 0,00E+00 | 3,69E-12 | 0,00E+00 | 3,54E-10 | 6,49E-10 | 0,00E+00 | | Land use | Pt | 9,15E+00 | 0,00E+00 | 1,04E-01 | 0,00E+00 | 6,24E-01 | 9,88E+00 | 0,00E+00 | the results in kg PO_4 eq. are obtained by multiplying the results in kg P eq. with a factor of 3.07. ### **ECOCAP BASE AC 16 INCOLORE** **TABLE 17**: Breakdown of the results of the use of resources with reference to the declared unit in the investigated information modules. | PARAMETERS | UNIT OF
MEASUREMENT | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | |------------|------------------------|----------|----------|----------|----------|-----------|----------|----------| | PERE | M | 9,34E-01 | 0,00E+00 | 2,06E-03 | 0,00E+00 | 8,40E-01 | 1,78E+00 | 0,00E+00 | | PERM | M | 8,24E-01 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -8,24E-01 | 0,00E+00 | 0,00E+00 | | PERT | M | 1,76E+00 | 0,00E+00 | 2,06E-03 | 0,00E+00 | 1,68E-02 | 1,78E+00 | 0,00E+00 | | PENRE | M | 6,76E+00 | 0,00E+00 | 1,46E-01 | 0,00E+00 | 2,78E+00 | 9,69E+00 | 0,00E+00 | | PENRM | M | 2,25E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -2,25E+00 | 0,00E+00 | 0,00E+00 | | PENRT | M | 9,02E+00 | 0,00E+00 | 1,46E-01 | 0,00E+00 | 5,27E-01 | 9,69E+00 | 0,00E+00 | | SM | Kg | 0,00E+00 | RSF | M | 0,00E+00 | NRSF | M | 0,00E+00 | FW | m ³ | 5,28E-03 | 0,00E+00 | 1,52E-05 | 0,00E+00 | 7,49E-04 | 6,04E-03 | 0,00E+00 | PERE = Use of renewable primary energy resources excluding primary renewable energy resources used as feedstocks; PERM = Use of renewable primary energy resources as feedstocks; PERM = Use of non-renewable primary energy resources excluding primary non-renewable energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of fresh water. ### **ECOCAP BASE AC 16 INCOLORE** **TABLE 18**: Waste breakdown with reference to the declared unit in the investigated information modules. | PARAMETERS | UNIT OF
MEASUREMENT | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | |------------|------------------------|----------|----------|----------|----------|----------|----------|----------| | HWD | Kg | 8,22E-06 | 0,00E+00 | 3,82E-07 | 0,00E+00 | 1,62E-06 | 1,02E-05 | 0,00E+00 | | NHWD | Kg | 8,25E-02 | 0,00E+00 | 7,52E-03 | 0,00E+00 | 6,45E-01 | 7,35E-01 | 0,00E+00 | | RWD | Kg | 2,83E-05 | 0,00E+00 | 9,89E-07 | 0,00E+00 | 2,66E-06 | 3,20E-05 | 0,00E+00 | $HWD = Hazardous\ Waste\ Disposed;\ NHWD = Non-Hazardous\ Waste\ Disposed;\ RWD = Radioactive\ Waste\ Disposed.$ ### **ECOCAP BASE AC 16 INCOLORE** **TABLE 19**: Breakdown of output streams with reference to the declared unit along the investigated information modules. | | , , | - | | ` | 3 | , | | | |------------|------------------------|----------|----------|----------|----------|----------|----------|----------| | PARAMETERS | UNIT OF
MEASUREMENT | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | | CRU | Kg | 0,00E+00 | MFR | Kg | 0,00E+00 | MER | Kg | 0,00E+00 | EEE | MJ | 0,00E+00 | EET | M | 0,00E+00 | CRU | Kg | 0,00E+00 CRU = Components for Reuse; MFR = Materials for Recycling; MER = Materials for Energy Recovery; EEE = Exported Electrical Energy; EET = Exported Thermal Energy. ### **ECOCAP BIANCO** **TABLE 20**: The indicator includes all greenhouse gases in the total GWP, but excludes the absorption and emissions of biogenic carbon dioxide and biogenic carbon stored in the product. This indicator is therefore equal to the GWP indicator originally defined in EN 15804: 2012 + A1: 2013. | | | Results for 1 kg | | | | | | | |---|-----------------------|------------------|----------|----------|----------|----------|----------|----------| | Potential environmental impacts
– additional indicator | UNITS | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | | GWP - GHG | Kg CO ₂ eq | 1,07E+00 | 0,00E+00 | 9,58E-03 | 0,00E+00 | 6,54E-01 | 1,73E+00 | 0,00E+00 | ### **ECOCAP BASE AC16 PHC** **TABLE 21**: The indicator includes all greenhouse gases in the total GWP, but excludes the absorption and emissions of biogenic carbon dioxide and biogenic carbon stored in the product. This indicator is therefore equal to the GWP indicator originally defined in EN 15804: 2012 + A1: 2013. | | | Results for 1 kg | | | | | | | |---|-----------------------|------------------|----------|----------|----------|----------|----------|----------| | Potential environmental impacts
– additional indicator | UNITS | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | | GWP - GHG | Kg CO ₂ eq | 1,07E+00 | 0,00E+00 | 9,58E-03 | 0,00E+00 | 6,54E-01 | 1,73E+00 | 0,00E+00 | ### **ECOCAP BASE AC 16 SCURO** **TABLE 22**: The indicator includes all greenhouse gases in the total GWP, but excludes the absorption and emissions of biogenic carbon dioxide and biogenic carbon stored in the product. This indicator is therefore equal to the GWP indicator originally defined in EN 15804: 2012 + A1: 2013. | | | Results for 1 kg | | | | | | | |---|-----------------------|------------------|----------|----------|----------|----------|----------|----------| | Potential environmental impacts
– additional indicator | UNITS | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | | GWP - GHG | Kg CO ₂ eq | 6,39E-01 | 0,00E+00 | 9,58E-03 | 0,00E+00 | 6,54E-01 | 1,30E+00 | 0,00E+00 | ### **ECOCAP BASE AC 16 INCOLORE** **TABLE 23**: The indicator includes all greenhouse gases in the total GWP, but excludes the absorption and emissions of biogenic carbon dioxide and biogenic carbon stored in the product. This indicator is therefore equal to the GWP indicator originally defined in EN 15804: 2012 + A1: 2013. | | | Results for 1 kg | | | | | | | |---|-----------------------|------------------|----------|----------|----------|----------|----------|----------| | Potential environmental impacts
– additional indicator | UNITS | A1-A3 | C1 | C2 | C3 | C4 | TOTAL | D | | GWP - GHG | Kg CO ₂ eq | 4,23E-01 | 0,00E+00 | 9,58E-03 | 0,00E+00 | 6,54E-01 | 1,09E+00 | 0,00E+00 | **TABLE 24**: Changes for the GWP-GHG indicator. | PRODUCT | GHG AVERAGE | COLOUR VARIANT | PERCENTAGE CHANGE
FROM AVERAGE | |---------------|-------------|----------------------------|-----------------------------------| | | 1,46E+00 | ECOCAP BIANCO | 18% | | ECOCAP BIANCO | | ECOCAP BASE AC16 PHC | 18% | | ECOCAP BIANCO | | ECOCAP BASE AC 16 SCURO | -11% | | | | ECOCAP BASE AC 16 INCOLORE | -26% | **TABLE 25**: Biogenic carbon content in the product and its packaging. | | C BIOGENIC | | |------------------------------|-------------------|-------------------| | | PRODUCT | PACKAGING: PALLET | | ECOCAP (all colour variants) | NON SIGNIFICATIVO | 8,63E-02 | Note: 1 kg of biogenic carbon is equivalent to 44/12 kg CO., ## OTHER ENVIRONMENTAL INFORMATION For the products under analysis CAP ARREGHINI S.p.A. declares that: - The required product information is transmitted downstream with the "safety data sheet", where provided, or with the "information sheet". - Information on the possible presence of PBT or vPvB substances >0.1% w/w can be found in sections 2.3 and/or 12.5 of the safety data sheets. - Information on possible restrictions of use (annex XVII), SVHC substances (Art. 59, Candidate List), can be found in section 15.1 of the Safety Data Sheets. - The company has verified that the suppliers of raw materials have complied with their obligations under the REACH Regulation. ## REFERENCES PCR 2019:14: "Construction products" version 1.11 UNI EN 15804 - Sustainability of constructions - Environmental product declarations - Framework development rules per product category. UNI EN ISO 14025:2010 - Environmental labels and declarations - Type III environmental declarations - Principles and procedures. UNI EN ISO 14040:2021 - Environmental management - Life cycle assessment - Principles and framework. UNI EN ISO 14044:2021 - Environmental management - Life cycle assessment - Requirements and guidelines. GENERAL PROGRAMME INSTRUCTIONS FOR THE INTERNATIONAL EPD® SYSTEM VERSION 3.01 (2019-09-18) Report LCA_CAP ARREGHINI_V1.1 # INFORMATION ABOUT THE COMPANY, THE CERTIFICATION BODY AND THE PROGRAMME The EPD owner has sole ownership of and responsibility for the EPD. EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. ## 7. INFORMATION ABOUT THE COMPANY, THE CERTIFICATION BODY AND THE PROGRAMME | | EPD owner | CAP Arreghini Spa | ARREGHINI° PRIN NINTS SINCE 1950 | https://www.caparreghini.it/ | |-----------------|--------------------|--|----------------------------------|------------------------------| | Technical Suppo | To desiral Commune | Document developed by QualityNet srl | quality vet ° | http://qualitynet.it/ | | | W | With the collaboration of EcamRicert Srl | Ecam
Ricert | https://ecamricert.com/ |